Nene Valley Primary School Calculation Guidance - Mental and Written Calculations

This guidance outlines both the mental and written methods that should be taught from Year 1 to Year 6.

The guidance has been written according to the National Curriculum 2014 and the written calculations for all four operations are as outlined on the appendices of the Programme of Study.

The document builds on the interconnectedness of mathematics and outlines the progression for addition, subtraction, multiplication and division. At Nene Valley Primary School, it is our intention that addition and subtraction should be taught at the same time to ensure children are able to see the clear links between the operations and the inverse nature of them, along with multiplication and division.

Children should secure mental strategies. They are taught the strategy of counting forwards and backwards in ones and tens first and then 'Special Strategies' are introduced. Children are taught to look carefully at the calculation and decide which strategy they should use. Children should explain and reason as to why they have chosen a strategy and whether it is the most efficient.

The formal written methods should be introduced with caution. Calculations that require a written method should be presented to the children and models and images, such as dienes apparatus, place value counters, etc. should be used to ensure children have a conceptual understanding of the written method and that it is not a process that the children use for every type of calculation regardless of whether it can be completed mentally or mentally with jotting i.e. the number line.

The guidance outlines the mental strategies that children should be encouraged to use:
A mental strategy that they can always rely on E.g. counting in tens and ones, forwards and backwards E.g. $56-25$ (count back in 10 s $56,46,36$ and back in ones 36,35 , 34, 33, 32, 31)
A special strategy they can select from a small range of strategies if they can see something special about the numbers they are being asked to calculate with E.g. 46 - 24 (I can use near doubles to support my calculation E.g. 46-23-1)

The guidance outlines the written methods as suggested on the appendices of the National Curriculum 2014 and suggests that children:

- Look at a calculation and decide whether it can be done mentally, mentally with a jotting or whether it needs a written method.
- Should always be shown written methods with place value apparatus to ensure children are clear about the value of the numbers that they are calculating with and the numbers do not just become digits.
- Estimate, calculate and check to ensure that the answer they generate has some meaning.

For the purpose of developing understanding there may be occasions when examples that can be completed mentally may be shown as a written method purely to develop understanding of the method. This needs to be made very clear to children and when they are practising the methods, appropriate calculations should be used.

Contents

Section 1 - Addition and Subtraction

Page
3 Key representations to support the conceptual understanding of addition and subtraction
4 Year 1
5 Year 2
6 Year 2 continued, Year 3
$7 \quad$ Year 3 continued
8 Year 4
9 Year 5
10 Year 6

Section 2 - Multiplication and Division

Page
11 Key representations to support the conceptual understanding of multiplication and division
12 Year 1
13 Year 2
14-15 Year 3
16-17 Year 4
18-21 Year 5
22-23 Year 6

Section 3 - Fractions

Page
24 Years 1
25 Year 2
26-27 Year 3
28 Years 4
29 Years 5
30 Years 6

Key representations to support the conceptual understanding of addition and

DEVELOPING UNDERSTANDING OF ADDITION AND SUBTRACTION

Year 1	
Objectives	Recall of Facts
Read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs	$=$
	$4+6=7+3$
	If we know 4+5 9
	We also know:
Represent and use number bonds and related subtraction facts within 20	$5+4=9$
	9-5 $=4$
	9-4 = 5
	$14+5=19$
Add and subtract one-digit and two-digit numbers to 20 , including zero	19-14 = 5, etc
	Work with all numbers up to 20.
	$18=11+7$
	$18=\square+7$

Mental Jottings with representations

Immerse children in practical opportunities to develop understanding of addition and subtraction. Link practical representations on a number track on a bead string to recording on a number line. By the end of Year 1 children should be able to recall and use facts within and to 20 .

applying their increasing knowledge of mental and written methods	Partitioning numbers in different ways in preparation for subtracting using decomposition: $90+2$ $80+12$ (I have subtracted a ten and added it onto the ones) Continue to record mental jottings as outlined in Year 2 with increasingly larger numbers. Use suitable resources as required (See models and images page). Children who have not achieved the age related expectations for Year 2 should not move onto formal written methods until they are secure with mental recall, jottings and a range of mental strategies.		$\begin{array}{r} 42 \\ -15 \end{array}$	$\begin{aligned} & 40+ \\ & -10+ \end{aligned}$	$\begin{aligned} & 30+12 \\ & -\underline{10+5} \\ & \underline{\underline{20+7}} \end{aligned}$	$42-15=$
Year 3						
Objectives:	Mental Recall/Jottings:	Written Methods with representations				
Add and subtract numbers mentally: A 3 digit number and 1s A 3 digit number and 10s A 3 digit number and 100s Add and subtract	Bridging to 10 $\begin{aligned} 425+8 & =425+5+3 \\ & =430+3 \\ & =433 \end{aligned}$ Rounding and Adjusting $\begin{aligned} 425+90 & =425+100-10 \\ = & 525-10 \end{aligned}$	Pupils use their understanding of place value and partitioning, and practise using columnar addition and subtraction with increasingly large numbers up to three digits to become fluent.				

		This is a good model which will help with the introduction of formal methods.	$\begin{aligned} & 376-168 \\ & 360+16 \\ & -\quad \frac{160+8}{200+8} \end{aligned}$
Year 4			
Objectives:	Mental Recall/Jottings:	Written Methods:	
Continue to secure and extend mental methods from previous year groups. To select whether a calculation can be done mentally, with a jotting or using a formal written method. Add and subtract numbers with up to 4 digits using formal written methods of column addition and subtraction where	Develop confidence at calculating mentally with larger numbers. Using the full range of strategies: - Counting in $1 \mathrm{~s} / 10 \mathrm{~s}$ - Bridging through multiples of 10 - Partitioning - Rounding and Adjusting - Reordering - Near Doubles - Bridging through 60 when calculating with time. Can I do it mentally? Should I use a jotting? Should I use a written method?	Add and subtract numbers up Estimate: $4000-1500=2500$ $2000+4000=6000$ Or. $1800+440 \mathrm{n}=670 \mathrm{n}$ Check: Is your estimate close to the Use the written method with $£ 32.50+£ 21.75=£ 54.25$ Estimate: $£ 33+£ 22=£ 55$	four digits. $\begin{array}{r} 3^{8} 9^{14} 512 \\ -\quad 475 \\ \hline 2477 \\ \hline 1756 \\ +\begin{array}{ll} 14 & 78 \\ \hline 6153 \\ \hline 1 & 1 \end{array} \end{array}$ wer you have calculated? imals in the context of money 2.50 1.75 . 25

appropriate.

3
£ $42.50-£ 13.35=£ 29.15$
Estimate:
$£^{3} 4^{1} 2 .{ }^{4} 5^{1} 0$
-£ 13.35
$£ 43.00-£ 13.00=£ 30.0 € 29.15$

Revert to expanded methods if the children experience any difficulty, using numbers that will ensure the children understand the process (i.e. no bridging/exchanging), before quickly moving into numbers that do require a written method.

Year 5			
Objectives:	Mental Recall/Jottings:	Written Methods:	
Add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction).	Use knowledge of place value to calculate mentally with increasingly larger numbers. $12462-2300$ Employ a range of special strategies to develop confidence in calculating mentally (as used in previous years):	Estimate: $\begin{gathered} 800+640=1440 \\ 789+642 \text { becomes } \end{gathered}$	
Add and subtract numbers mentally with increasingly large numbers.	$\begin{gathered} 2364+1999=2364+2000-1 \\ =4364-1=4363 \end{gathered}$	Answer: 1431 Check: Is your estimate	Answer: 351 Answer: 475 to the answer you have calculated?
Use rounding to check answers to calculations and determine, in the	$\begin{aligned} & 13484+2400=15884 \\ & 13000+2000=15000 \\ & 484+400=884 \\ & 15000+884=15884 \end{aligned}$	$25.356+346.28$ Estimate: $25+350=375$	$9.076-3.142$ Estimate: $9-3=6$
context of a problem, levels of accuracy.	$4=2001-1997$	$\begin{array}{r} 25.356 \\ +346.28 \\ \hline \end{array}$	$\begin{aligned} & 8.9 .1076 \\ & -3.142 \\ & \hline \end{aligned}$
Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why.	$\begin{aligned} & 1997 \quad 20002001 \\ & 13486-5000 \\ & 13486-3000=10486 \\ & 10486-2000=8486 \end{aligned}$	$\frac{371.636}{11}$	5.934

Key representations to support conceptual understanding of multiplication and division

DEVELOPING UNDERSTANDING OF MULTIPLICATION AND DIVISION

Year 1		
Objective	Examples	Representations
Count, read and write numbers to 100 in numerals. Count in multiples of twos, fives and tens. Double numbers to 20 .	Use of visual models to support counting in 2 s , 5 s and 10 s. Ensure children begin to see the patterns when counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s . Double/halve numbers up to 20: $\begin{aligned} & 10+10=10 \times 2 \\ & 20-10=20 \div 2 \end{aligned}$ Children do not need to record number sentences using the symbols. Develop their vocabulary by encouraging children to explain what they are doing.	Grouping and sharing 2808088 How many legs will 2 toddios Arrays - Use Numicon resources to support the teaching of arrays $3 \times 2=6$ Three, two times equals six $2 \times 3=6$ Two, three times 상 18

for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods (appears also in Written Methods).	12×3 With corresponding division facts. Recall facts along with counting in steps sizes. To make 6 fairy cakes you need... 50 g of sugar 50g of flour 50 g of butter 1 egg 1 tsp of vanilla essence How much will you need to make 12 fairy cakes?	

Year 4		
Objective	Mental Methods	Written Methods with representations
Count in multiples of 6, 7 , 9,25 and 1000 (copied from Number and Place Value) Recall multiplication and division facts for multiplication tables up to 12×12.	If the children know multiplication and division facts for: $2,5,10,3,4$ and 8 times tables they now need to learn. $\left\lvert\, \begin{array}{llll} 6 \times 6 & 7 \times 7 & 9 \times 9 & 11 \times 11 \\ 7 \times 6 & 9 \times 7 & 11 \times 9 & 12 \times 11 \\ 9 \times 6 & 11 \times 7 & 12 \times 9 & 12 \times 12 \\ 11 \times 6 & 12 \times 7 & \end{array}\right.$	Measuring and scaling E.g. How many times longer is the longer ribbon? 5 cm 20 cm

	How many groups of 5 hundreds can we make? 0 So we exchange...	10 10 10 10 10 10 10 10	1 1 1 1 1 1 1 1 1
		How many groups of 5 tens can we make? 8 with 3 left over We exchange the 3 tens that are left	How many groups of 5 ones can we make? 6 with 2 left over The 2 left over are our remainder

Year 5
Objective

Count forwards or backwards in steps of powers of 10 for any given number up to 1000000. Multiply and divide numbers mentally drawing upon known facts.	$12 \div 3=4$					
	$30 \times 40=1200$		$120 \div 3=40$			
	$0.3 x$	$4=1.2$	$3 x$		$\div 40=$	
Multiply and divide whole numbers and those involving decimals by 10 , 100 and 1000.	$1.2 \div 3=0.4$			$0.3 \times 0.4=0.12$, 100 and 1000.
Identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers. Know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers.	Thousands Th	Hundreds H	Tens T	Ones U	$\begin{aligned} & \text { /10 } \\ & \text { (tenths) } \\ & t \end{aligned}$	/100 (Hundredths) h
	Please note lower case letters are used on the place value grid for the columns to the right of the decimal place.					
	Children will	ill need to k	ow how	dentify	e numbers	through tests of

Establish whether a number up to 100 is prime and recall prime numbers up to 19. Recognise and use square numbers and cube numbers, and the notation for squared (2) and cubed (3).	well as through the recall of their multiplication facts, and be able to recall prime numbers to 19 , to enable them to tackle questions such as: Circle the two prime numbers: 2939495969 Write the three prime numbers which multiply to 231 \square \square \square This objective can be linked to the Year 5 measures objectives: 1×1 ० $1 \times 1=1^{2}$ - Estimate volume (e.g. using $1 \mathrm{~cm}^{3}$ blocks to build cuboids (including cubes)) and capacity (e.g. using water) - Solve problems involving volume $1 \times 1 \times 1=1^{3}$ $2 \times 2 \times 2=2^{3}$ \square $3 \times 3 \times 3$

Year 5 Continued.			
Objective	Written Methods		
Written: Multiply numbers up to 4 digits by a one- or twodigit number using a formal written method, including long multiplication for twodigit numbers Divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context.		Division $432 \div 5=$ Estimate: $400 \div 5=80$ Calculate (Short division): (See this example in Y 4) $372 \div 12=31$ Estimate: $370 \div 12=30$ r 10 Calculate (Long division): Ensure children are able to express remainders either as a remainder, a fraction or a decimal. For example, remainder 12 or 12/15 (4/5) or 0.8	$432 \div 5$ becomes $\begin{aligned} & 8 \quad 6 \\ & 5 \underbrace{3} \text { r2 } \\ & 43^{3} 2 \end{aligned}$ Answer: 86 remainder 2 $\begin{gathered} \begin{array}{cc} 3 & 1 \\ 12 & 3 \\ 3 & 2 \\ 3 & 6 \\ 1 & 2 \\ \frac{1}{2} & 2 \end{array} \end{gathered}$ This method can still be explained using the terminology in the Y4 example for

Year 6	
Objective	Mental Methods
Perform mental calculations, including with mixed operations and large numbers Identify common factors, common multiples and prime numbers Use their knowledge of the order of operations to carry out calculations involving the four operations	They undertake mental calculations with increasingly large numbers and more complex calculations. Pupils continue to use all the multiplication tables to calculate mathematical statements in order to maintain their fluency. Pupils round answers to a specified degree of accuracy, for example, to the nearest 10, 20, 50 etc., but not to a specified number of significant figures. Pupils explore the order of operations using brackets; for example, $2+1 \times 3=5$ and $(2+1) \times 3=9$. Common factors can be related to finding equivalent fractions. Calculate $900 \div(45 \times 4)=900 \div 180=5$ A bag of four oranges costs thirty seven pence. How much do twelve oranges cost?

Year 6 Continued				
Objective	Written Methods			
Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication Divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context Divide numbers up to 4 digits by a two-digit whole number using the formal written method of short division where	Short division $98 \div 7$ becomes $\begin{gathered} 1 \quad 4 \\ 7 \longdiv { 9 \quad 8 } \end{gathered}$ Answer: 14 Long division	$432 \div 5$ becomes Answer: 86 remainder 2	$496 \div 11$ becomes Answer: $45 \frac{1}{11}$ $15=$ $\left.\right)$ $32 \div 15=28.8$	

appropriate,
interpreting remainders according to the
context

DEVELOPING UNDERSTANDING OF FRACTIONS, DECIMALS AND PERCENTAGES

Year	Objectives	Examples	Models and Images	
Year 1	- Recognise, find and name a half as one of two equal parts of an object, shape or quantity	Children use their knowledge of fractions of shape to find fractions of quantities.	Children should be give practical - Recognise, find and name a quarter as one of four equal parts of an object, shape or quantity	of quantities within 20. Record work pictorially.

Year	Objectives	Examples	Models and Images
Year 2	- Recognise, find, name and write fractions $\frac{1}{3}, \frac{1}{4}, \frac{2}{4}$ and $\frac{3}{4}$ of a length, shape, set of objects or quantity - Write simple fractions for example, $\frac{1}{2}$ of $6=3$ and recognise the equivalence of $\frac{2}{4}$ and $\frac{1}{2}$.	Children use their knowledge of unit and non-unit fractions of shapes to find fractions of quantities. They relate this to find fractions of a length e.g. $\frac{2}{4}$ of $1 \mathrm{~m}=$ Children need to relate finding a quarter to halving and halving again. Pupils should count in fractions up to 10 , starting from any number and using the $\frac{1}{2}$ and $\frac{2}{4}$ equivalence on the number line (Non Statutory Guidance)	If I can see $\frac{1}{4}$ how many quarters can you see? If I can see $\frac{2}{3}$ how many thirds can you see? Numicon shapes and number rods are useful models (see Numicon Teachers' resources Y2) E.g. $\quad 12 \div 3=4$ $\frac{1}{3}$ of $12=4$ $4=\frac{1}{3}$ of 12

- Recognise and show, using diagrams, equivalent fractions with small denominators
- Add and subtract fractions with the same denominator within one whole
- Compare and order unit fractions, and fractions with the same denominators

Children need to relate and reason about why their diagrams are equivalent to a half - make connections between the numerator and the denominator E.g. $1 / 2=\frac{4}{8}$

The numerator will be half of the denominator.
Children should be encouraged to make the connection between their multiplication tables and equivalents
E.g. $\frac{1}{3}=\frac{3}{9}$ because $3 \times 3=9$.
$\frac{5}{7}+\frac{1}{7}=\frac{6}{7}$

Children need to use practical resources/visual representations to support the comparison of fractions
E.g. 1/3 > 1/4

Children should also be taught how to order fractions on a number line.
E.g. Make the brown rod with the pink rods. Two of these make a brown rod. Therefore each of them is one half of the brown rod. Continue with the red and the white rods.
(See Numicon Teachers' resources Y3 for additional models and images)

	digit number by 10 and 100 , identifying the value of the digits in the answer as ones, tenths and hundredths		found in the Numicon Teachers' resources Y4.
Year	Objectives	Examples	Models and Images
Y5	- Add and subtract fractions with the same denominator and denominators that are multiples of the same number - Multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams	$\begin{aligned} & \frac{2}{4}+\frac{1}{8}= \\ & \frac{1}{3}-\frac{1}{9}= \\ & \frac{3}{4} \times 3= \\ & 1 \frac{1}{4} \div 5= \end{aligned}$ Children's calculating with fractions involves addition and subtraction and continues to develop to include multiplying proper fractions by whole numbers e.g. $\frac{2}{5} \times 7$. All of the calculating with fractions should be supported through practical and pictorial methods.	$\begin{aligned} & \frac{3}{4}-\frac{3}{12}=\frac{9}{12}-\frac{3}{12}=\frac{6}{12}=\frac{1}{2} \\ & \frac{2}{5}+\frac{2}{3}=\frac{6}{15}+\frac{10}{15}=\frac{16}{15}=1 \frac{1}{15} \\ & \frac{2}{5} \times 7=\frac{14}{5}=2 \frac{4}{5} \end{aligned}$

Year	Objectives	Examples	Models and Images
Y6	- Add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions - Multiply simple pairs of proper fractions, writing the answer in its simplest form [for example, $1 / 4 \times 1 / 2=$ $1 / 8$] - Divide proper fractions by whole numbers [for example, $1 / 3 \div 2=$ $1 / 6$]	$\begin{aligned} & 3 \frac{1}{2}+\frac{1}{3}= \\ & 4 \frac{1}{2}-2 \frac{2}{3}= \\ & \frac{1}{2} \times \frac{1}{4}= \\ & \frac{2}{3} \div 4= \end{aligned}$	$\begin{aligned} & 2 \frac{2}{5}+\frac{3}{4}=\frac{12}{5}+\frac{3}{4}=\frac{48}{20}+\frac{15}{20}=\frac{63}{20}=3 \frac{3}{20} \\ & \frac{1}{3} \times \frac{3}{4}=\frac{3}{12}=\frac{1}{4} \end{aligned}$ Using an array to support the multiplication of fractions builds on the children's understanding of multiplication as repeated addition. Use a 'whole' grid and divide it according to the fractions the question asks you to multiply. In this case, the grid will be divided into thirds one way and quarters the other way. The whole is now divided into twelfths. Highlight what fraction you are multiplying to find your

